

Au(I)-Catalyzed Hydrative Rearrangement of 1,1-Diethynylcarbinol Acetates to Functionalized Cyclopentenones and Allenones

Chang Ho Oh* and Swastik Karmakar

Department of Chemistry, Hanyang University, Sungdong-Gu, Seoul 133-791, South Korea

changho@hanyang.ac.kr

Received September 24, 2008

Atom-economical syntheses of isomeric 5-acetoxy-2-alkyl-2-cyclopentenones (2) and acetoxymethyl α -alkylallenones (3) have been described via Au-catalyzed hydrative rearrangement of 1,1-diethynylcarbinol acetates (1). In anhydrous condition, Au(I)-catalyzed [3,3]-rearrangement of 1 afforded the 3-alkynylallenyl acetate 4 in low yield. Treatment of 1 with Au(I) catalyst in wet CH₂Cl₂ produced either 2 or 3 as a major product depending on the temperature, reaction time, and catalyst loading. **D** has been proposed as an intermediate, which might be formed via Au(I)-induced internal oxacyclization of the intermediate 4 followed by chemoselective nucleophilic attack by the water molecule. Formation of 2 or 3 might be explained via sequential 1,3-dioxole ring opening and gold-promoted 5-*endo-dig* carbocyclization or simple protonation of the intermediate **D**, respectively.

Introduction

Substituted cyclopentenones are the important building blocks for the synthesis of a wide array of pharmaceuticals¹ and interesting natural products.² Therefore, popular strategies have been developed for the construction of this five-membered ring system, which include the intramolecular aldol reaction,³ the electrocyclizations such as Nazarov cyclization⁴ and Rautenstrauch rearrangement,⁵ and the cycloadditions such as Pauson– Khand reaction⁶ and [2 + 3]- or [4 + 1]-cycloadditions.^{7,8} Judicious placement of double bonds and the scope of appropriate functionalization are of utmost interest of cyclopentenone construction strategy. Specially, introduction of an alkyl group at the α -position of α,β -unsaturated carbonyl compounds is still challenging in organic synthesis,^{2d} as many pharmaceuticals (e.g., Prostaglandins, Limaprost, Misoprostol, etc.)^{1f} and floral odorants (e.g., Hedione, (+)-(1*R*,2*S*)-methyl *epi*-jasmonate, etc.)^{2a} contain an alkyl substituent at the α -position of their cyclopentenone skeleton. Now, we intend to introduce a new methodology for the construction of α -alkyl α' -acetoxy cyclopentenone (**2**), which could be a valuable intermediate in organic synthesis. Additionally, another product, acetoxymethyl α -alkylallenone (**3**), could be an effective building block for the

 ⁽a) Corey, E. J. Angew. Chem., Int. Ed. Engl. 1991, 30, 455–465.
 (b) Noyori, R.; Suzuki, M. Science 1993, 259, 44–45.
 (c) Straus, D. S.; Glass, C. K. Med. Res. Rev. 2001, 21, 185–210.
 (d) Gallos, J. K.; Stathakis, C. I.; Kotoulas, S. S.; Koumbis, A. E. J. Org. Chem. 2005, 70, 6884–6890.
 (e) Mascitti, V.; Corey, E. J. J. Am. Chem. Soc. 2006, 128, 3118–3119.
 (f) Roberts, S. M.; Santoro, M. G.; Sickle, E. S. J. Chem. Soc., Perkin Trans. 1 2002, 1735–1742.

^{(2) (}a) Fráter, G.; Bajgrowicz, J. A.; Kraft, P. *Tetrahedron* 1998, 54, 7633–7703. (b) Dobbs, D. A.; Vanhessche, K. P. M.; Brazi, E.; Rautenstrauch, V.; Lenoir, J.-Y.; Genet, J.-P.; Wiles, J.; Bergens, S. H. *Angew. Chem., Int. Ed.* 2000, 39, 1992–1995. (c) limura, S.; Overman, L. E.; Paulini, R.; Zakarian, A. *J. Am. Chem. Soc.* 2006, *128*, 13095–13101. (d) Rezgui, F.; Amri, H.; Gaied, M. M. E. *Tetrahedron* 2003, 59, 1369–1380.

^{(3) (}a) Xiao-Xin, S.; Qing-Quan, W.; Xia, L. *Tetrahedron: Asymmetry* **2002**, *13*, 461–464. (b) Dugoviè, B.; Reissig, H.-U. *Synlett* **2008**, *13*, 769–773. (c) Yan, B.; Spilling, C. D. J. Org. Chem. **2008**, *73*, 5385–5396.

^{(4) (}a) Denmark, S. E. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 5, pp 751-784. (b) Habermas, K. L.; Denmark, S. E.; Jones, T. K. Org React. 1994, 45, 1-158. (c) Tus, M. A. Acc. Chem. Res. 2003, 36, 284. (d) Tus, M. A. Eur. J. Org. Chem. 2005, 2193-2206. (e) Pellissier, H. Tetrahedron 2005, 61, 6479-6517. (f) Liang, G.; Trauner, D. J. Am. Chem. Soc. 2004, 126, 9544-9545. (g) Frontier, A. J.; Collison, C. Tetrahedron 2005, 61, 7577-7606. (h) Zhang, L.; Wang, S. J. Am. Chem. Soc. 2006, 128, 1442-1443. (i) Jung, M. E.; Yoo, D. J. Org. Chem. 2007, 72, 8565-8568.

^{(5) (}a) Rautenstrauch, V. J. Org. Chem. **1984**, 49, 950–952. (b) For a recent gold(I)-catalyzed variant, see: Shi, X.; Gorin, D. J.; Toste, F. D. J. Am. Chem. Soc. **2005**, 127, 5802–5803. (c) Kato, K.; Kobayashi, T.; Fujinami, T.; Motodate, S.; Kusakabe, T.; Mochida, T.; Akita, H. Synlett **2008**, 1081–1085.

TABLE 1. Optimization of Catalysts To Construct Cyclopentenone and Allenone

entry	catalyst	solvent ^a	temp (°C)/ time (h)	product (% isolated yield)
1	AuCl (5 mol %)	DCE	0/0.5	4a (5)
2	AuCl(PPh ₃) (5 mol %)	DCE	0/0.5	4a (5)
3	AuCl(PPh ₃)/AgSbF ₆ (5 mol %)	DCE	0/0.25	4a (20)
4	AuCl(Me ₂ S)/AgSbF ₆ (5 mol %)	DCE	rt/3	no reaction
5	AuBr ₃ (3 mol $\%$)	DCE	0/0.5	4a (10)
6	NaAuCl ₄ •2H ₂ O (3 mol %)	DCE	0/0.5	4a (8)
7	$AgSbF_6$ (3 mol %)	DCE	rt/3	complex mixture
8	AuBr ₃ (3 mol %)	DCM/water	rt/1.0	3a (30)
9	NaAuCl ₄ ·2H ₂ O (3 mol %)	DCM/water	rt/1.0	3a (25)
10	AuCl(PPh ₃)/AgSbF ₆ (3 mol %)	DCM/water	rt/1	2a (82), 3a (5)
11	AuCl(PPh ₃)/AgSbF ₆ (6 mol %)	DCM/water	0/0.25	3a (70)
12	CF ₃ CO ₂ H (10 mol %)	DCM/water	rt/4	no reaction
13	<i>p</i> -toluenesulfonic acid (10 mol %)	DCM/water	rt/4	no reaction
14	CF ₃ SO ₃ H (10 mol %)	DCM/water	rt/4	no reaction

numerous elegant transformations as well as for the synthesis of some important natural products and medicinally valuable compounds.⁹

During the course of our studies,¹⁰ we became interested in exploring an efficient transformation involving rearrangement of 1,1-diethynylcarbinol acetate¹¹ by gold catalysis. Since the

(7) (a) Little, R. D. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: New York, 1991; Vol. 5, pp 239–270. (b) Chan, D. M. T. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: New York, 1991; Vol. 5, pp 271–314. (c) Barluenga, J.; Barrio, P.; Riesgo, L.; López, L. A.; Tomás, M. J. Am. Chem. Soc. 2007, 129, 14422– 14426. (d) Qi, X.; Ready, J. M. Angew. Chem., Int. Ed. 2008, 47, 7068–7070.

(8) (a) Murakami, M.; Itami, K.; Ito, Y. J. Am. Chem. Soc. 1999, 121, 4130–4135.
(b) Gagnier, S. V.; Larock, R. C. J. Am. Chem. Soc. 2003, 125, 4804–4807.
(c) Rigby, J. H.; Wang, Z. Org. Lett. 2003, 5, 263–264.
(d) Davie, C. P.; Danheiser, R. L. Angew. Chem., Int. Ed. 2005, 44, 5867–5870.

(9) (a) Modern Allene Chemistry; Krause, N., Hashmi, A. S. K., Eds.; Wiley-VCH: Weinheim, Germany, 2004; Vol. 1, pp 392-406 and Vol. 2, pp 661-667 and 889-894. (b) Ma, S.; Li, L. Org. Lett. 2000, 2, 941-944. (c) Kim, J. T.; Kelin, A. V.; Gevorgyan, V. Angew. Chem., Int. Ed. 2003, 42, 98-101. (d) Hashmi, A. S. K.; Schwarz, L.; Bolte, M. Eur. J. Org. Chem. 2004, 1923-1935. (e) Jung, M. E.; Min, S. J. J. Am. Chem. Soc. 2005, 127, 10834-10835. (f) Yoshino, T.; Ng, F.; Danishefsky, S. J. J. Am. Chem. Soc. 2005, 128, 14185-14191. (g) Zhou, C. Y.; Chan, P. W. H.; Che, C. M. Org. Chem. 2007, 72, 1051-1054. (i) Alcaide, B.; Almendros, P.; Aragoncillo, C.; Redondo, M. C. J. Org. Chem. 2007, 72, 1604-1608. (j) Marshall, J. A. J. Org. Chem. 2007, 72, 8153-8166. (k) Dudnik, A. S.; Sromek, A. W.; Rubina, M.; Kim, J. T.; Kel'in, A. V.; Gevorgyan, V. J. Am. Chem. Soc. 2008, 130, 1440-1452.

(10) (a) Kim, N.; Kim, Y.; Park, W.; Sung, D.; Gupta, A. K.; Oh, C. H. Org. Lett. 2005, 7, 5289–5291. (b) Oh, C. H.; Kim, A.; Park, W.; Park, D. I.; Kim, N. Synlett 2006, 2781–2784. (c) Oh, C. H.; Kim, A. New J. Chem. 2007, 31, 1719–1721.

(11) (a) Kato, K.; Teraguchi, R.; Kusakabe, T.; Motodate, S.; Yamamura, S.; Mochida, T.; Akita, H. *Synlett* **2007**, 63–66. (b) Kato, K.; Teraguchi, R.; Yamamura, S.; Mochida, T.; Akita, H.; Peganova, T. A.; Vologdin, N. V.; Gusev, O. V. *Synlett* **2007**, 638–642.

electrocyclization of pentadienyl cation must proceed with the conservation of orbital symmetry, the ability to create new carbon–carbon bonds requires the proximity between two reacting triple bonds.¹² Herein, we wish to report a new and facile approach toward the gold-catalyzed water-assisted chemose-lective syntheses of structurally isomeric α -alkyl α' -acetoxy cyclopentenones (**2**) and allenones (**3**) utilizing 1,1-diethynyl-carbinol acetates as starting material. The excellent alkynophilicity of gold has been well-documented, and propargylic acetates upon treatment with gold catalyst can be activated for the 1,2- and/or 1,3-acetate shift depending on the substrates and reaction conditions.¹³ To date, numerous novel endeavors have been made for establishing the central factors which govern such type of regioselective activation of the propargylic acetates.^{12a,14}

Results and Discussion

All 1,1-diethynylcarbinol acetates 1a-h were prepared from the corresponding esters via Grignard reaction with ethynylmagnesium bromide followed by acetylation. We initiated our investigation by treating 1a with various gold catalysts, and those results are summarized in Table 1.

Initially, **1a** was treated with different Au(I) catalysts (AuCl, AuCl(PPh₃), AuCl(PPh₃) with AgSbF₆, AuCl(SMe₂) with AgSbF₆) and Au(III) catalysts (AuBr₃ and NaAuCl₄•2H₂O) in dry 1,2-dichloroethane (DCE) at low temperature (0 °C to room temperature). Allenyne acetate **4a** was the only isolated product in low yields (5–20%). Among Au(I) and Au(III) catalysts, AuCl(PPh₃) with AgSbF₆ (entry 3) catalyzed this conversion significantly. Formation of **4a** can be understood by Aucatalyzed [3,3]-sigmatropic shift of the acetate group (Scheme 1).^{4h} Catalysts AuCl(Me₂S) with AgSbF₆ (entry 4) and AgSbF₆

^{(6) (}a) Laschat, S.; Becheanu, A.; Bell, T.; Baro, A. Synlett 2005, 2547–2570. (b) Gibson, S. E.; Stevenazzi, A. Angew. Chem., Int. Ed. 2003, 42, 1800–1810. (c) Sugihara, T.; Yamaguchi, M.; Nishizawa, M. Chem.—Eur. J. 2001, 7, 1589–1595. (d) Brummond, K. M.; Kent, J. L. Tetrahedron 2000, 56, 3263–3283. (e) Chung, Y. K. Coord. Chem. Rev. 1999, 188, 297–341. (f) Oliver, G.; Schmalz, H. Angew. Chem., Int. Ed. 1998, 37, 911–914. (g) Schore, N. E. Org. React. 1991, 40, 1. (h) Pera, N. P.; Nilsson, U. J.; Kann, N. Tetrahedron Lett. 2008, 49, 2820–2823. (i) Kaasalainen, E.; Tois, J.; Russo, L.; Rissanen, K.; Helaja, J. Tetrahedron Lett. 2005, 46, 5097–5098. (k) Herndon, J. W.; Zu, J. Org. Lett. 1999, 1, 15–18. For a review on transition-metal-mediated routes to cyclopentenones, see: (l) Gibson, S. E.; Lewis, S. E.; Mainolfi, M. J. Organomet. Chem. 2004, 689, 3873–3890.

^{(12) (}a) Shi, F. Q.; Li, X.; Xia, Y.; Zhang, L.; Yu, Z. X. J. Am. Chem. Soc.
2007, 129, 15503–15512. (b) He, W.; Herrick, I. R.; Atesin, T. A.; Caruana, P. A.; Kellenberger, C. A.; Frontier, A. J. J. Am. Chem. Soc. 2008, 130, 1003–1011.

⁽¹³⁾ For reviews, see: (a) Hashmi, A. S. K. *Gold Bull.* **2004**, *37*, 51–65. (b) Hashmi, A. S. K. *Chem. Rev.* **2007**, *107*, 3180–3211. (c) Li, Z.; Brouwer, C.; He, C. *Chem. Rev.* **2008**, *108*, 3239–3265.

SCHEME 1. Plausible Mechanism for Au(I)-Catalyzed Syntheses of Isomeric Cyclopentenone and α -Allenone

itself (entry 7) were incompetent to result in either no reaction or decomposition due to overreaction.

Mechanistic consideration revealed that any nucleophilic additive might be necessary to bring two reacting partners in close proximity in order to achieve a new C-C bond formation intramolecularly. In this context, Zhang and Wang^{4h} showed that Au(I)-catalyzed [3,3]-rearrangement of propargylic acetates could be accomplished effectively in wet dichloromethane (DCM). Notably, water did not participate as a nucleophile in their transformation, rather it acted as a proton shuttle in the proton-transport catalysis strategy.^{12a} We, however, considered the possibility of the chemoselective nucleophilic attack by the water molecule on the allenvne acetate 4a followed by new C-C bond formation leading to any probable cyclization. Again, substrate 1a was treated with gold(III) catalysts (AuBr3 and NaAuCl₄•2H₂O) in wet CH₂Cl₂^{4h} at room temperature for 1 h (entries 8 and 9). In both experiments, any cyclization was not observed; instead 3a was isolated in 30 and 25% yields (entries 8 and 9). Gratifyingly, when only 3 mol % of AuCl(PPh₃) with AgSbF₆ was used as a catalyst system in wet CH₂Cl₂ (entry 10) at room temperature, cyclopentenone 2a was isolated in 82% yield within 1 h along with 3a in 5% yield. Since the substituted allenones have been remarkably utilized as building blocks for various transformations,⁹ we were in quest of an optimum condition for the synthesis of 3a. Surprisingly, when the reaction was carried out with high catalyst loading (6 mol %) using AuCl(PPh₃) with AgSbF₆ as catalyst in wet CH₂Cl₂ at low temperature (0 °C) for 15 min, 3a was isolated in 70% yield (entry 11). By TLC monitoring of the reaction, formation of 2a was not observed within that reaction time. The observed results (entries 10 and 11) might lead to a conclusion that generation of 2a required low catalyst loading (3 mol %), relatively high activation energy (rt), and long reaction time (1 h), while formation of 3a demanded relatively high catalyst loading (6 mol %), low activation energy (0 °C), and short reaction time (10-20 min). Additionally, as there are several examples that gold- and platinum-catalyzed transformations sometimes can be carried out by simple Brønsted acid catalysis,^{14d,15} the substrate **1a** was treated with the catalytic amount (10 mol %) of Brønsted acids (entries 12-14) in wet CH₂Cl₂ at room temperature to make an investigation of any probable rearrangement. Notably, 1a was recovered unchanged under these conditions (entries 12-14). Thus, this rearrangement cannot be catalyzed by simple Brønsted acids. Control experiments were made to get more insight into the mechanism. First of all, when we started the reaction by treating 1a with AuCl(PPh₃)/AgSbF₆ at 0 °C with low catalyst loading (3 mol %) and allowed it to stay at room temperature for 2.5 h, we obtained only 2a in moderate yield (55%). Second, when the product 3a was treated under the same conditions, cyclization to 2a did not occur (eq 1). From those two controlled experimentations, we could get a mechanistic insight, where 3a might not be the intermediate to 2a.

From the synthetic point of view, the condition 10 (Table 1) was applied to diverse 1,1-diethynylcarbinol acetates in order to investigate the generality of this reaction condition (Table 2). Interestingly, 1,1-diethynylcarbinol acetates, having an arylmethylene chain, worked well under the reaction condition (entries 1-4). p-Tolylmethylene and naphthylmethylenesubstituted 1,1-diethynylcarbinol acetates 1b and 1d (entries 2 and 4) on treatment with AuCl(PPh₃)/AgSbF₆ (3 mol %) in wet CH₂Cl₂ underwent smooth conversion to the corresponding cyclopentenones 2b and 2d in 80 and 75% yields, respectively. Rearrangement of 3,4-dimethoxybenzylmethyl 1,1-diethynylcarbinol acetate (1c) required relatively longer reaction time (2 h) to afford **2c** in 73% yield (entry 3). Notably, α -allenone acetates 3a-d were isolated as minor products (5-20%). α -Alkyl-substituted cyclopentenones 2e and 2f were also obtained by this method in 60 and 65% yields, respectively (entries 5 and 6). The substrates 1g and 1h, having a hydroxylprotected long alkyl chain, underwent a similar type of cyclization to provide 2g and 2h in moderate yields (58 and 50%, respectively; entries 7 and 8). Especially, 1g required higher catalyst loading (5 mol %) for this conversion.

α-Allenones can usually be synthesized by Dess–Martin periodinane oxidation of the homopropargylic alcohol or Swern oxidation of the allenic alcohol, and in the past decade, some new methodologies have been developed for their constructions.¹⁶ Considering their wide applicability, we decided to explore the generality of the reaction condition 11 (entry 11 in Table 1). We treated all 1,1-diethynylcarbinol acetates (**1a**–**h**) under that condition. Surprisingly, all the substrates except **1g**, on treatment with AuCl(PPh₃) with AgSbF₆ (6 mol %) in wet CH₂Cl₂ at 0 °C, smoothly converted into the corresponding α-allenone acetates (**3a–f** and **3h**) within 10 to 15 min in good to excellent yields (55–85%) (Table 3). However, relatively

^{(14) (}a) Marion, N.; Nolan, S. P. Angew. Chem., Int. Ed. 2007, 46, 2750–2752. (b) Correa, A.; Marion, N.; Fensterbank, L.; Malacria, M.; Nolan, S. P.; Cavallo, L. Angew. Chem., Int. Ed. 2008, 47, 718–721. (c) Soriano, E.; Contelles, J. M. Chem.–Eur. J. 2008, 14, 6771–6779. (d) Schwier, T.; Sromek, A. W.; Yap, D. M. L.; Chernyak, D.; Gevorgyan, V. J. Am. Chem. Soc. 2007, 129, 9868–9878. (e) Li, G.; Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2008, 130, 3740–3741. (f) Amijs, C. H. M.; Carrillo, V. L.; Echavarren, A. M. Org. Lett. 2008, 9, 4021–4024. (g) Cordonnier, M. C.; Blanc, A.; Pale, P. Org. Lett. 2008, 10, 1569–1572. (h) Kato, K.; Teraguchi, R.; Motodate, S.; Uchida, A.; Mochida, T.; Peganova, T. A.; Vologdind, N. V.; Akita, H. Chem. Commun. 2008, 3687–3689. (i) Sakaguchi, K.; Okada, T.; Shinada, T.; Ohfune, Y. Tetrahedron Lett. 2008, 49, 25–28. (j) Liu, Y.; Zhou, S.; Li, G.; Yan, B.; Guo, S.; Zhou, Y.; Zhang, H.; Wang, P. G. Adv. Synth. Catal. 2008, 350, 797–801.

^{(15) (}a) Hashmi, A. S. K. Catal. Today 2007, 122, 211–214. (b) Dudnik,
A. S.; Sromek, A. W.; Rubina, M.; Kim, J. T.; Kel'in, A. V.; Gevorgyan, V.
J. Am. Chem. Soc. 2008, 130, 1440–1452. (c) Rhee, J. U.; Krische, M. J. Org. Lett. 2005, 7, 2493–2495. (d) Li, Z.; Zhang, J.; Brouwer, C.; Yang, C. G.; Reich,
N. W.; He, C. Org. Lett. 2006, 8, 4175–4178. (e) Rosenfeld, D. C.; Shekhar, S.; Takemiya, A.; Utsunomiya, M.; Hartwig, J. F. Org. Lett. 2006, 8, 4179–4182.

 TABLE 2.
 Au(I)-Catalyzed Hydrative Isomerization of Various 1,1-Diethynylcarbinol Acetates 1a-h

OA R	c AuCl(PPh ₃)/AgSbF ₆ DCM/Water, rt.)Ac + R	OAc 3
entry	Substrates	mol (%)	Time (h)	Products (% yield)
I	OAc (1a)	3	1	2a (82), 3a (5)
2	OAc (1b)	3	1	2b (80), 3b (5)
3	MeO OAc (1c)	3	2	2c (73), 3c (8)
4	OAc (1d)	3	1	2d (75), 3d (6)
5	OAc (1e)	3	2	2e (60), 3e (18)
6		3	3	2f (65), 3f (15)
7	(p-)O ₂ NC ₆ H ₄ COO-(CH ₂) ₃	1 g) 5	3	2 g (58), 3 g (20)
8	(p-)H ₃ CC ₆ H ₄ SO ₃ (CH ₂) ₄	1 h) 3	2	2h (50), 3h (10)

TABLE 3. Rapid Formation of α-Alkyl α'-Acetoxy Allenones 3

OAc

		AuCl(PPh ₃))/AgSbF ₆		
	K //	DCM/Water, 0 °C			
	1			ິ 3	
entry	substrates	mol (%)	time (min)	products 3 (% yield)	
1	1a	6	15	3a (70)	
2	1b	6	15	3b (70)	
3	1c	6	15	3c (65)	
4	1d	6	15	3d (70)	
5	1e	6	15	3e (80)	
6	1f	6	15	3f (85)	
7	1g	8	5	3g (70)	
8	1ĥ	6	10	3h (55)	

high catalyst loading (8 mol %) was essential to obtain 3g in 70% yield within 5 min in wet CH₂Cl₂ at 0 °C.

To rationalize our observations, a plausible mechanistic manifold for the formations of isomeric α, α' -substituted cyclopentenones and α -allenones acetates was hypothesized in Scheme 1. Due to extraordinary alkynophilicity of gold, Au(I) activates the triple bond, which promotes 3,3-sigmatropic shift of the acetate functionality via cationic vinyl gold intermediate **A** to furnish the alkyne allene acetate **4**. Now, Au(I) plays a central role in activating alkyne functionality. Initially, Au(I) coordinates with the triple bond, which induces oxacyclization/ 1,3-dioxolium ion generation via internal nucleophilic attack by the carbonyl oxygen of the acetoxy group at the C-2 of allene to furnish **B**. A water molecule is expected to be involved at this stage to form an intermediate **C**, which is then converted into **D** by simple protodemetalation. Interestingly, Au(I) further activates the allene functionality,¹⁷ which induces the sequential 1,3-dioxole ring opening and 5-*endo-dig* carbocyclization to furnish the gold-coordinated cyclopentenone **E** via route a (Scheme 1).¹⁸ The latter on prodemetalation can be converted into the cyclopentenone **2**. On the other hand, depending on the reaction condition, the intermediate **D** can rearrange into α -allenone acetates **3** via hydrative 1,3-dioxole ring opening followed by protonation (route b).

Conclusions

We have developed a new and general method for the synthesis of isomeric 5-acetoxy-2-alkyl-2-cyclopentenones (2) and acetoxymethyl α -alkylallenones (3). Former was formed via Au(I)-catalyzed 5-*endo-dig* carbocyclization of a plausible intermediate **D** derived from gold-catalyzed hydrative rearrangement of the allene yne acetate **4** (Scheme 1), whereas formation of **3** might be realized by sequential 1,3-dioxole ring opening and protonation of the same intermediate. In a wider sense, reactions described herein may take a modular entry to a metal-mediated rearrangement of the allene yne acetoxy system in the presence of a nucleophile, and this methodology can be useful to construct some important building blocks, such as α, α' -substituted cyclopentenones **2** and α -allenones **3**.

Experimental Section

General Experimental Procedure for Compound 2. In a 5 mL new test tube, 3 mol % (in case of **1g**, 5 mol %) of AuCl(PPh₃) and AgSbF₆ was taken in 1.0 mL of wet dichloromethane¹⁹ at 0 °C. It was then allowed to reach room temperature (25 °C) followed by addition of 1,1-diethynylcarbinol acetate (**1a**-**h**) (0.2 mmol) dissolving in a minimum volume of wet dichloromethane. The resulting mixture was stirred for 1–3 h (as stated in Table 2) at room temperature by monitoring TLC of the reaction periodically. Upon completion, the solvent was removed under vacuum and the crude product was subjected to flash column chromatography (10:1 hexane/EtOAc) to afford the pure products **2a**-**h**.

3-Benzyl-2-oxocyclopent-3-enyl acetate (2a). Compound **2a** (45 mg, 0.19 mmol) was synthesized following the general procedure starting from **1a** (50 mg, 0.23 mmol): IR (film, cm⁻¹) 1744, 1718, 1627; ¹H NMR (400 MHz, CDCl₃) δ 7.32–7.18 (m, 5H), 7.06 (s, 1H), 5.17 (dd, J = 6.6, 3.0 Hz, 1H), 3.52 (s, 2H), 3.04 (d, J = 18.8 Hz, 1H), 2.47 (dm, J = 18.8, 2.4 Hz, 1H), 2.14 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 203, 171, 156, 145, 138, 129, 129, 127, 72, 34, 32, 21; HRMS calcd for C₁₄H₁₄NaO₃ 253.0841; found, 253.0835.

General Experimental Procedure for Compound 3. In a 5 mL new test tube, 6 mol % (in the case of 1g 8 mol %) of

JOC Article

^{(16) (}a) Mandai, T.; Kunitomi, H.; Higashi, K.; Kawada, M.; Tsuji, J. Synlett
1991, 697–698. (b) Santelli-Rouvier, C.; Lefrere, S.; Mamai, M.; Santelli, M.
Tetrahedron Lett. 1995, 36, 2459–2460. (c) Cunico, R. F.; Zaporowski, L. F.;
Rogers, M. J. Org. Chem. 1999, 64, 9307–9309.

⁽¹⁷⁾ Gandon, V.; Lemière, G.; Hours, A.; Fensterbank, L.; Malacria, M. Angew. Chem., Int. Ed. 2008, 47, 7534–7538.

^{(18) (}a) Funami, H.; Kusama, H.; Iwasawa, N. Angew. Chem., Int. Ed. 2007, 46, 909–911. (b) Lee, J. H.; Toste, F. D. Angew. Chem., Int. Ed. 2007, 46, 912–914. (c) Dolaine, R.; Gleason, J. L. Org. Lett. 2000, 2, 1753–1756. (d) Ramanathan, B.; Keith, A. J.; Armstrong, D.; Odom, A. L. Org. Lett. 2004, 6, 2957–2960. (e) Madhushaw, R. J.; Lin, M. Y.; Sohel, S. M. A.; Liu, R. S. J. Am. Chem. Soc. 2004, 126, 6895–6899. (f) Zhang, L.; Kozmin, S. A. J. Am. Chem. Soc. 2005, 127, 6962–6963. (g) Sun, J.; Kozmin, S. A. J. Am. Chem. Soc. 2005, 127, 13512–13513. (h) Oppenheimer, J.; Johnson, W. L.; Tracey, M. R.; Hsung, R. P.; Yao, P. Y.; Liu, R.; Zhao, K. Org. Lett. 2007, 9, 2361–2364.

⁽¹⁹⁾ Prepared by shaking distilled dichloromethane with deionized water in a separatory funnel.

JOC Article

AuCl(PPh₃) and AgSbF₆ was taken in 0.5 mL of wet dichloromethane at 0 °C followed by addition of 1,1-diethynylcarbinol acetate (**1a-h**) (0.2 mmol) dissolving in a minimum volume of wet dichloromethane. The resulting mixture was stirred for 10–15 min at 0 °C and the reaction monitored by TLC periodically. Upon completion, the solvent was removed under vacuum and the crude product was subjected to flash column chromatography (10:1 hexane/EtOAc) to afford the pure products **3a-h**.

α-Benzyl-α'-acetoxy allenone (3a). Compound 3a (37 mg, 0.161 mmol) was synthesized following the general procedure starting from 1a (50 mg, 0.23 mmol): IR (film, cm⁻¹) 1950, 1925, 1745, 1690, 1554; ¹H NMR (400 MHz, CDCl₃) δ 7.29–7.18 (m, 5H), 5.24 (t, J = 2.6 Hz, 2H), 4.99 (s, 2H), 3.54 (t, J = 2.4 Hz, 2H), 2.17 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 216, 192, 171, 139,

129, 128.6, 127, 106, 82, 66, 33, 21; HRMS calcd for $C_{14}H_{14}NaO_3$ 253.0841; found, 253.0835.

Acknowledgment. We gratefully acknowledge the Korea Science and Engineering Foundation (KOSEF R01-2007-000-20315-0) and BK21 for the support of this research.

Supporting Information Available: General experimental procedures for the synthesis of compounds **2** and **3** and spectral data for all new compounds This material is available free of charge via the Internet at http://pubs.acs.org.

JO802103G